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The network of biomolecular interactions that occurs within cells is large and complex. When such a
network is analyzed, it can be helpful to reduce the complexity of the network to a “kernel” that maintains
the essential regulatory functions for the output under consideration. We developed an algorithm to iden-
tify such a kernel and showed that the resultant kernel preserves the network dynamics. Using an
integrated network of all of the human signaling pathways retrieved from the KEGG (Kyoto Encyclopedia
of Genes and Genomes) database, we identified this network’s kernel and compared the properties of the
kernel to those of the original network. We found that the percentage of essential genes to the genes en-
coding nodes outside of the kernel was about 10%, whereas ~32% of the genes encoding nodes within the
kernel were essential. In addition, we found that 95% of the kernel nodes corresponded to Mendelian dis-
ease genes and that 93% of synthetic lethal pairs associated with the network were contained in the kernel.
Genes corresponding to nodes in the kernel had low evolutionary rates, were ubiquitously expressed in
various tissues, and were well conserved between species. Furthermore, kernel genes included many
drug targets, suggesting that other kernel nodes may be potential drug targets. Owing to the simplification
of the entire network, the efficient modeling of a large-scale signaling network and an understanding of the
core structure within a complex framework become possible.
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INTRODUCTION

Cellular systems have evolved molecular interaction networks to maintain
their complex regulatory functions, which allow cells to perform processes
such as differentiation and to respond to the environment. We speculated
that such interaction networks were built around certain core structures or
“kernels,” which would be simpler to analyze without losing essential
information. An individual kernel can be defined broadly as a simplified
framework of a given complex interaction network that preserves the dy-
namics and the output of the original network. Identification of such
kernels would enable insights into the organization and evolution of bio-
molecular interaction networks, allow the generation of representative but
simplified representations of complete networks that can be modeled, and,
eventually, facilitate the exploration of interventions to manipulate cellular
systems to perform desired responses (1).

When discussing biological networks, we refer to the proteins or genes
as “nodes” and the relationships between the proteins or genes as “edges.”
Although the networks are typically constructed with the names of the
encoding genes, the functions are assumed to be performed by the en-
coded proteins or RNAs. Two general approaches to the study of
biological networks are (i) component-wise analysis of individual com-
ponents in the networks, as in studies of “minimal gene sets,” and (ii)
computational analysis of simplified networks. Several studies have in-
vestigated the minimal gene sets (2) required for survival, using compu-
tational approaches (3–5) or experiments with bacterial mutants (2, 6, 7).
One limitation of these component-wise approaches is that they cannot
take into account regulatory interactions among the genes. The methods
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that involve simplifying complex networks generally strive to preserve
“static” topological properties, such as the small-world property, scale-
freeness, fractality, or modularity (8–21), and can largely be classified
into two categories (17), coarse graining and filtering or pruning. Coarse
graining refers to the grouping of nodes with respect to various topolog-
ical properties and replacing each group of nodes with a single node called
a coarse-graining unit (CGU), thereby achieving a simpler network repre-
sentation (12, 18). The filtering or pruning approach deletes nodes clas-
sified as less important from scores assigned to the nodes on the basis of
the network’s topological characteristics. One limitation of these simplified
network approaches is that, by primarily focusing on preserving static
topological properties of general complex networks, they fail to preserve
the dynamical properties of cellular signaling networks. Cellular signaling
networks exhibit properties, such as feedback loops, that make preserva-
tion of dynamical properties challenging.

The spanning tree network reduction approach of Kim et al. (13) re-
duces only the number of edges while preserving all the nodes of the orig-
inal network. Because the resulting simplified network is a tree, it cannot
preserve the dynamics of the original network if the original contains
feedback loops (22–25) or feedforward loops (26, 27). The approach taken
by Itzkovitz et al. (12) replaces network motifs with CGUs, which in prin-
ciple can preserve the dynamics of a network only if the intrinsic dynam-
ics of each network motif are identically implemented in the CGU of the
reduced network. However, it remains unclear how to implement such
identical dynamics at each CGU. Song et al. (18) proposed a reduction
scheme that tiles a network with boxes such that the shortest path length
of any two nodes in a box is less than a given number called a box size,
where the size of the box is 1 + m, with m the maximum of the shortest
paths between two nodes in the box. However, the resulting network does
not contain any information on the direction or interaction type (activation
or inhibition) of the edges; thus, preservation of dynamic properties is not
possible. Using network symmetry, Xiao et al. (19) proposed a network
reduction scheme in which a set of nodes is grouped as one node if the
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rearrangement of their position within the set does not change the network
topology. This approach can be effectively applied to a gene network
containing many functionally redundant genes, but it is not effectively ap-
plicable to cell signaling networks that usually contain many long cascades.

Here, we describe the “kernel identification algorithm,” which is an
algorithm that identifies a kernel systematically by considering the rela-
tionship between a network’s structure and its dynamics. Because of the
enormous complexity of biomolecular interaction networks, it is not com-
putationally feasible to find a representative kernel by simultaneously tak-
ing into account the dynamics of all possible subnetwork cases. The
kernel identification algorithm overcomes this difficulty by recursive se-
quential replacement of the neighborhood subnetwork of each node with a
smaller one that preserved the same dynamics. The neighborhood subnet-
work of a node is the network composed of the nodes directly connected
to the given node. We show that our algorithm can be applicable to large-
scale cell signaling networks to produce smaller, simpler networks that
retain the original network’s dynamics. Although some coarse-graining
methods, such as fractal analysis (11, 18), also perform repetitive substitu-
tions of subnetworks with smaller ones and are as efficient as our method
in terms of computational complexity, they generally fail to preserve the
dynamical properties of a network.
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By applying the kernel identification
algorithm, we identified kernels for various
signaling networks ranging from bacterium
(Escherichia coli) and yeast (Saccharomyces
cerevisiae) to human, and we verified that
the identified kernels preserved the input-
output dynamics of the original networks.
We found that a large proportion of the
nodes within the kernels (kernel nodes)
corresponded to essential genes, disease-
associated genes, genes encoding drug tar-
gets, or genes that are part of synthetic lethal
gene pairs. Moreover, we found that kernel
nodes were encoded by genes conserved
in multiple species, suggesting low evolu-
tionary rates, and encoded proteins present
in various tissues, suggesting that these
kernel-associated genes may serve core
cellular functions. The kernel identification
algorithm can provide a reduced form of a
given network, and this smaller network
may provide insight into the design princi-
ples of complex biomolecular interaction
networks, as well as suggest effective ways
to perturb or manipulate the network.
RESULTS

Kernel identification algorithm
We wanted to develop an algorithm that
preserved the input and output nodes of a
biomolecular interaction network and the
input-output dynamics of the original net-
work while reducing the complexity of
the network (Fig. 1A). An input node in
a network denotes a node without any reg-
ulatory inputs (indegree is zero). Likewise,
an output node denotes any node that lacks
w

any relationships with downstream nodes (outdegree is zero). For exam-
ple, in some signaling networks, ligands or receptors (when ligands are
not specified) may correspond to input nodes, and transcription factors
(when their target genes are not specified) may correspond to output nodes.
The remaining nodes in a network are intermediate nodes. We developed an
algorithm that minimized the number of intermediate nodes by replacing
certain subnetworks within a large network with smaller subnetworks.

To overcome the computational burden that would result from ana-
lyzing simultaneously all possible dynamics of biological networks and
their subnetworks, the kernel identification network recursively replaces
the neighborhood subnetwork of each node with a smaller network, either
with fewer nodes or fewer edges or both, with the same dynamics until no
further replacement is possible.

To determine the rules for subnetwork replacement, we developed and
simulated the mathematical models of all two- and three-node networks
with ordinary differential equations (see Materials and Methods and Sup-
plementary Model Descriptions), and then clustered the two- and three-
node networks according to the similarity in their dynamics (Fig. 1B).
We verified that the clustering assignments were similar between linear
and Hill-type mathematical models and among the parameter values used
(see fig. S1 and Supplementary Model Descriptions). On the basis of the
Fig. 1. Scheme of the kernel identification algorithm. (A) Illustration of the kernel identification that preserves
the fundamental dynamics of the original network with a node reduction percentage of 73%. (B) Multi-
dimensional scaling map for responses of two- and three-node networks (see Materials and Methods
for details). If two networks are close on the map, their responses are considered similar. The top box
shows the subnetworks. The graph below shows the clustering of the positive and negative regulatory
subnetworks (circled in gray). The response curves for each group or subnetwork are shown on either
side of the graph. (C) Examples of situations leading to subnetwork replacement. (D) Subnetworks that
cannot be reduced. (E) Illustration of subnetwork replacement around an edge.
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clustered networks, the algorithm attempts to replace the neighborhood
subnetwork of each node with a smaller network (see Fig. 1C for
examples of subnetwork replacement and Materials and Methods and
fig. S2 for details). The algorithm cannot replace subnetworks either (i)
when one node in a three-node subnetwork is also a component node of
a self-feedback loop, a two-node feedback loop, or an intermediate node
of an incoherent feedforward loop, or (ii) when both the indegree and the
outdegree of the node are >1 (Fig. 1D). When a network cannot be re-
duced any further by the above reduction process, the algorithm reduces
the network by replacing the neighborhood subnetwork of a set of edges,
taking into account consistency of the types of regulation among the neigh-
boring edges (see Fig. 1E for an example and Materials and Methods
and fig. S2 for details). We defined the “node reduction percentage” as
[(the number of intermediate nodes removed during reduction)/(the number
of intermediate nodes in the original network)] × 100. For the sample
w

network shown in Fig. 1A, the node reduction percentage equals 73%
[(8/11) × 100].

We applied the algorithm to the signaling networks ofE. coli, S. cerevisiae,
and H. sapiens, where we define the signaling network as an integrated
network of all the signaling pathways obtained from the KEGG (Kyoto
Encyclopedia of Genes and Genomes) database (28) for each species,
and identified the kernels of those networks (data S3 to S5). We refer
to these three networks as the E. coli, yeast, and human signaling net-
works. Through Boolean simulations (29, 30), we verified that the kernels
preserved the dynamical properties of the input-output response profiles
of the original networks (see Supplementary Model Descriptions and
table S1). Because it is not feasible to construct and simulate large-scale
networks, such as the human signaling network, by ordinary differential
equations, we used Boolean models to verify the preservation of network
dynamics.
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Fig. 2. Kernel structures of biological regulatory networks. (A) Kernels of the
circadian network and integrin pathway with node reduction percentages
of 67% and 94%, respectively. (B) Kernels of the networks of E. coli, yeast,
and human with node reduction rates of 77%, 81%, and 81%, respectively.
(C) Distributions of input, intermediate, and output nodes, and node reduc-
tion percentages of the E. coli, yeast, and human networks.
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Structural characteristics of networks and kernels
Application of our algorithm to relatively small-sized networks, the circa-
dian regulation network (31, 32) in mammals (data S1) and a generalized
integrin signaling pathway (unknown regulations were assumed to be ac-
tivations) representing data from multiple species (33) (data S2), resulted
in a node reduction percentage of 67% and 94%, respectively (Fig. 2A).
The circadian kernel consisted of two negative feedback loops and one
positive feedback loop, a structure consistent with the known core of cir-
cadian regulation (34). The considerable reduction that we achieved for
the integrin network resulted from the following characteristics of the in-
tegrin pathway: It had only 8 negative edges (inhibitory regulations) out of
101 edges, and hence most feedforward loops in the pathway were of co-
herent type, and the pathway consisted of many long signaling cascades
(the network diameter of the pathway, the maximum of the shortest path
lengths between node pairs, was 14).

A signaling network with a high node reduction percentage contains
numerous redundant nodes in terms that are not required to preserve input-
output dynamics; thus, the node reduction rate can be considered as a
measure of redundancy in signaling networks. To explore the amount of
redundancy in signaling networks of three species, E. coli, S. cerevisiae,
and H. sapiens (Fig. 2B), we compared the node reduction percentages for
the kernels of the E. coli, yeast, and human signaling networks. The node
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reduction percentage for each network was
~80% (Fig. 2C), suggesting that these three
signaling networks have a similar propor-
tion of redundant intermediate signaling
proteins. The amount of reduction in the
number of nodes and edges increased as
the proportion of intermediate nodes in
the original network increased (Fig. 2C
and fig. S3). For example, the human
network with 1953 total nodes had the
largest proportion of intermediate nodes
(44%) and exhibited the greatest reduction
in nodes and edges when the kernel was
compared to the original network (fig. S3).

We examined the global topological
properties of network density, clustering
coefficient, network diameter, and char-
acteristic path length between the original
networks and their kernels (Fig. 3). The
network densities and average clustering
coefficients of the kernels were greater
than those of the original networks (Fig.
3, A and B), which means that the nodes
of the kernels were more densely con-
nected, and neighborhood nodes of each
node were more densely connected to
each other. From the comparison of the
network diameters and the characteristic
path lengths (Fig. 3, C and D), we found
that the small-world property of the ker-
nels was stronger; that is, every node in
the kernel was on average a smaller num-
ber of steps away from any other node in
the kernel. For example, in the human
network, the kernel nodes were 3.3 steps
away from each other, whereas the aver-
age number of steps was 6.3 in the orig-
inal network.
w

We also analyzed the local properties of the networks, such as the sub-
network structure and the properties of the most highly connected node,
the “giant component.” We compared the distribution ratios of three-
node subnetworks (numbered 1 through 13) between the human network
and its kernel (Fig. 3E). The subnetwork structure, which plays the role
of a signal splitter (subnetwork ID1), was the most frequently occurring
(50%) in the original network, whereas a signal integrator (subnetwork
ID3) was dominant (47%) in the kernel. This implies that the human
network includes a large number of signal splitters and many signaling
pathways are connected by signal integrators. Indeed, the giant compo-
nent of the original human signaling network included 85% of the total
number of nodes (fig. S4).

The local properties of the E. coli and yeast networks were different
from those of the human network. In these two networks, the signal split-
ter subnetwork (ID1) was the most frequently occurring three-node sub-
network structure in both the original networks and the kernels (fig. S5),
suggesting that these two networks have signal-splitting subnetworks but
that most pathways in the networks are isolated. Indeed, most of the
pathways in the E. coli and yeast networks were short in length (Figs.
2B and 3D), and the networks did not contain extensively connected
components (fig. S4). The different structural features related to subnet-
work occurrence and node interconnectedness between the human
Fig. 3. Contrasting topological properties of original networks and kernels in the networks of E. coli, yeast,
and human. (A) Network density, a measure of the density of edges in a network. (B) Average clustering
coefficient, a measure of degree to which nodes in a network tend to cluster together. (C) Network diam-
eter, the longest path connecting two nodes. (D) Characteristic path length, the average number of con-
nections between two nodes. (E) Frequency distributions of three-node subnetworks in the human network
and its kernel. The shapes of the subnetworks (ID1 through ID13) are shown at the top right.
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network and the networks of E. coli and yeast may relate to the multi-
functionality of kinases, which is reflected in the number of connections
that they make. We found that the average indegree and outdegree of
human kinases were significantly higher than the average indegree and
outdegree of total nodes in both the original and the kernel networks
(Fig. 4, A to D). In contrast, indegree and outdegree of the kinases rel-
ative to the total nodes in the original and kernel networks of the two
single-cell species were not significantly different (Fig. 4). Moreover,
this tendency is enforced in the kernels (Fig. 4, B and D, and fig. S6).
These results imply that human kinases function to connect multiple
signaling pathways.

Enrichment of essential genes, disease genes, and
synthetic lethal genes in the kernel
Kernel nodes can be defined as those not deleted during the reduction
process, which results in these nodes having similar or increased
connectivity in the reduced network relative to the same nodes in the orig-
inal network. It is possible that the kernel nodes play pivotal roles and that
the non–kernel nodes have auxiliary roles in terms of biological processes.
We investigated the enrichment of essential genes, disease genes, and syn-
thetic lethal gene pairs in the sets of the kernel nodes and the non–kernel
nodes for the human network. If the kernel nodes represented proteins
with critical functions, then we would expect that the kernels would be
enriched for nodes in each of these classes. We observed that 10% of
the non–kernel nodes were essential genes, whereas 32% of the kernel
nodes were essential genes (Fig. 5A) [essential genes were defined from
Zhang and Lin (35); see Materials and Methods], and the difference is
statistically significant (P = 1.38 × 10−21). In addition, we observed that
most of the essential genes present in the original human network were
included in the kernel (fig. S7). Essential genes also tended to be enriched
in kernel networks of E. coli and yeast (fig. S8). Highly connected pro-
teins in protein-protein interaction networks have a higher probability of
being encoded by essential genes (36), and the original human network
exhibited this property (fig. S9). To determine whether enrichment of es-
w
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sential genes in kernel nodes depended on node degree (the number of
inputs and outputs), we considered only the nodes of small degree (<4)
for the calculation of the ratio of essential genes (see fig. S10 for the de-
gree distribution in the human network, and note that the number of nodes
of degree <4 is about half of the total number of nodes). Even when only
nodes with relatively few connections were considered, the kernel nodes
were still enriched for essential genes (Fig. 5A). Thus, the kernel-identifying
algorithm identified both essential genes represented by those in the kernel
network and nonessential genes represented by nodes that were deleted by
the network reduction.

In the human network, we found a similar enrichment for disease-
associated genes, which were defined on the basis of the Online Mendelian
Inheritance in Man (OMIM) database (37) in the National Center for
Biotechnology Information (NCBI). Most kernel nodes (95%) corresponded
to Mendelian disease genes (Fig. 5B), and their enrichment in the kernel
compared to the non–kernel nodes was statistically significant. As with
the essential gene enrichment, we found that the enrichment in disease-
associated genes was also not dependent on degree and that even limiting
the analysis to nodes with a degree <4 showed a significant enrichment in
disease-associated genes in the kernel nodes compared to the non–kernel
nodes (Fig. 5B). Many genes are both essential and disease-related. When
the classes are taken together, the results suggest that kernel nodes repre-
sent biologically important points in the network and often correspond to
critical genes.

Synthetic lethality is considered to be closely related to network
structure (38, 39). We expected that the kernel nodes would be enriched
in synthetic lethal gene pairs. Two genes are called a synthetic lethal
gene pair if mutation of either alone is not lethal, but mutation of both
leads to death or a significant decrease in the organism’s fitness (40). We
analyzed how many synthetic lethal gene pairs were included in the
kernel of the human network. Synthetic lethal pairs of human genes were
based on Conde-Pueyo et al. (40). As expected, most synthetic lethal
pairs (93%) occurred between two kernel nodes, and we did not identify
any synthetic lethal pairs in the set of non–kernel nodes (Fig. 5C). Our
finding that kernels contained not only most essential genes and disease
genes but also most synthetic lethal gene pairs suggests that kernel nodes
are critical in terms of individual components and, because the synthetic
lethality is closely related to network structure (38, 39) and the kernel
was obtained in consideration of network structure, in terms of network
structure.

Tissue broadness and species broadness
of kernel nodes
Because kernels are representative of biological networks, we speculate
that kernel nodes may be ubiquitously expressed in various tissues and
be conserved among diverse species. We investigated “tissue broadness”
and “species broadness” for both kernel nodes and non–kernel nodes of
the human network. The tissue broadness (41) of a gene is defined as the
number of human tissues in which the gene is expressed (42), and species
broadness as the number of species in which homologs of the gene exist
(43) (see Materials and Methods). We found that both the tissue broadness
(Fig. 5D) and the species broadness (Fig. 5E) of the kernel nodes were
significantly larger than those of the non–kernel nodes.

A high value for tissue broadness suggests that the gene is expressed
ubiquitously and that the gene plays a common basic cellular function of
various types of cells. We found that many kernel nodes were related to
metabolic and developmental processes (table S2). Similarly, a high value
for species broadness of a gene implies that the gene is evolutionarily con-
served; hence, the kernel nodes may represent a conserved core of the
network.
Fig. 4. Human kinases are more connected than those of E. coli or yeast.
(A) Average outdegrees of the total nodes and the kinases in the original
networks. (B) Average outdegrees of the total nodes and the kinases in the
kernels. (C) Average indegrees of the total nodes and the kinases in the
original networks. (D) Average indegrees of the total nodes and the kinases
in the kernels. We extended the original networks by including phosphoryl-
ation interactions (edges) for which the regulation (activation or inhibition)
was undefined. The error bars represent SE.
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Evolutionary rates of kernel nodes and the
relationship with function
Large values for tissue and species broadness of the kernel nodes imply
that the gene sequences of the kernel nodes might have changed little dur-
ing evolution. We explored the evolutionary rate (see Materials and
Methods) of the kernel nodes with the hypothesis that conserved nodes
would have lower evolutionary rates than non–kernel nodes and found that
the kernel nodes had significantly lower evolutionary rates than did the
non–kernel nodes (Fig. 5F), implying that the gene sequences of the
kernel nodes are conserved during evolution.

From a Gene Ontology (GO) analysis, we observed that the functions
assigned to the kernel nodes were different from those of the non–kernel
nodes. The kernel nodes were mainly related to metabolic processes (48%,
table S2) or to developmental processes (49%, table S2), whereas many of
the non–kernel nodes were related to sensory perception (62%, table S3).
We also observed a relationship between gene functions and evolutionary
rates. The genes with relatively higher evolutionary rates were mainly re-
lated to immune processes and sensory perception, whereas those with
w

lower evolutionary rates were related to developmental and metabolic pro-
cesses (Fig. 5G). Because the genes related to metabolic processes play
a pivotal role for cell survival (64.4% of the essential genes are related
to metabolic processes with the enrichment of P = 4.9 × 10−29), these
genes might have been evolutionarily stable. We noticed that the kernel
nodes with high evolutionary rates were related to immune processes,
whereas the non–kernel nodes with high evolutionary rates were related
to sensory perception (Fig. 5G and tables S4 to S9). Because the kernel
was determined from the network structure, this type of network reduction
process can provide insight into gene functions.

Although genes associated with immune processes and sensory per-
ception had relatively high evolutionary rates (Fig. 5G), these genes were
associated with different parts of the network: Immune process–associated
genes were enriched in the kernel nodes, whereas sensory perception–
associated genes were enriched in the non–kernel nodes. We hypothesized
that the genes related to immune processes were represented by nodes
within elaborately and tightly regulated network substructures, such as
feedback loops, and thus were not eliminated during network reduc-
ww.SCIENCESIGNALING.org

 on N
ovem

ber 15, 2015
http://stke.sciencem

ag.org/
nloaded from

 

tion. In comparison, we predicted that those
genes related to sensory perception would
not be represented by nodes in network sub-
structures such as feedback loops. Indeed,
the nodes representing the immune response
genes were more enriched in feedback loops
compared to the nodes representing the sen-
sory perception genes (Fig. 5H). Genes with
low evolutionary rate have been negatively
selected (44) and genes with high evolution-
ary rate have been positively selected (45)
during evolution. Hence, these results sug-
gest that the functions of the kernel nodes
might have been conserved by negative se-
lection or the deleterious effects of muta-
tions on organisms, whereas those of the
non–kernel nodes might have evolved by
positive selection or by beneficial effects
of mutations.

Network kernel and drug targets
Because most kernel nodes in the human
signaling network can be mapped to dis-
eases (fig. S7), we speculated that the
kernel nodes might be related to drug tar-
gets. Hase et al. (46) showed that drug tar-
gets are enriched in the backbone network
composed of middle-degree nodes (6 to 38
connections) in a protein-protein interac-
tion network from Rual et al. (47). We
compared the ratios of drug targets in the
kernel and non–kernel nodes and found
that drug targets were enriched in the ker-
nel (Fig. 6, A and B), which is consistent
with the previous work (46). Drug targets
were identified on the basis of DrugBank
(48). In addition, we examined the relation-
ship between drug targets and node de-
gree, and we found that nodes that were
drug targets had middle degrees (Fig. 6C),
which is also consistent with the previous
work (see fig. S11 for the degree correlation
Fig. 5. Biological relevance of the kernel of the human network. (A) Ratios of essential genes of the original
human network in the kernel and the non-kernel. Either all the nodes (left) or only the nodes with degree
<4 (right) were evaluated and nodes corresponding to essential genes were retained preferentially in the
kernel. Node calculationswere performed as follows: nodes that represent essential genes in the kernel/total
number of nodes in the kernel (blue); nodes that represent essential genes in the non-kernel/total number of
nodes in the non-kernel (red); for the low-degree node calculation (the same as described but with nodes of
degree <4). (B) Ratios of disease genes in the kernel compared to those not in the kernel were increased
fourfold when all the nodes were considered (left) or sixfold when only the nodes with degree <4 (right) were
considered. The ratios were calculated as in (A) with nodes that represent disease genes in the numerator.
(C) Distribution of synthetic lethal gene pairs. K-K, K-N, and N-N denote the pairs composed of two
kernel nodes, a kernel node and a non–kernel node, and two non–kernel nodes, respectively. The fre-
quency represents the proportion of synthetic lethal pair occurring in eachgroup. (D) Distributions of tissue
broadness of kernel and non–kernel nodes. (E) Distributions of species broadness for kernel nodes and
non–kernel nodes. (F) Distributions of evolutionary rates for the kernel nodes tend to be lower than those of
non–kernel nodes. (G) Functional annotations of the four gene classes grouped by the ranges of evolu-
tionary rate for the kernel andnon–kernel genes. (H) Enrichment of 11networkmotifs of four geneclasses in
the human network.
31 May 2011 Vol 4 Issue 175 ra35 6

http://stke.sciencemag.org/


R E S E A R C H A R T I C L E

http://stke.sciencem
ag.or

D
ow

nloaded from
 

between the protein-protein interaction network and the human network).
We observed that the neighborhood nodes of drug targets had low degrees
(Fig. 6D), and drug targets had low closeness centrality (Fig. 6E), which is a
measure of how a given node is close to all other nodes (49). These char-
acteristics suggest that the nodes that are drug targets are middle-degree
hubs in the kernel but are peripheral nodes such that their perturbation
would locally affect the network. On the basis of these results, we suggest
that analysis of the topological properties of the kernel may enable discovery
of drug targets.

DISCUSSION

Genomic and other experimental techniques have enabled the discovery
and study of large-scale biomolecular interaction networks, such as the
map of human cancer signaling (50). However, the scale of biological net-
works has typically required the study and modeling of either small sub-
networks for performing detailed parameterization or larger sets of nodes
with limited opportunity to parameterize the interactions. One means of
solving this problem is to condense a biological network into a smaller
one that is equivalent in terms of its dynamical and topological aspects.
We considered whether interaction networks have evolved from certain
core structures and if such reduced networks could represent the dynamics
of the source network. To address these questions, we introduced the con-
cept of a kernel of a biological network, which we defined as the minimal
essential network that preserves the input-output dynamics of the original
network. We created an algorithm by which we systematically identified a
kernel by considering the relationship between the network structure and
its dynamics (Fig. 1). Because the proposed algorithm reduces signaling
networks by considering the locally equivalent subnetworks instead of
global equivalents, it is fast and can be applied to large-scale networks
containing tens of thousands of nodes and millions of edges. Several studies
have simplified complex networks by considering the static properties of
the network topology (8–19). Compared to our approach, these alterna-
w

tives do not preserve the dynamical properties of the input-output response
profiles of the original network (fig. S12). Among the coarse-graining
methods, hierarchical modularization methods (20, 51) are most
effectively applicable to various networks because they do not require
any a priori information on the number or size of modules (that is, groups
of clustered nodes) (51). However, coarse-graining methods still cannot
reduce networks while preserving their dynamics because a module repre-
sented as a single node in the reduced network can actually contain many
feedback or feedforward loops that entail complex dynamics.

For more detailed modeling of the behavior of individual genes, the
parameters for each reduced node can be expanded while maintaining a
simplified but fully representative network away from the area under
study. With our algorithm, we identified the kernels of several networks
ranging from E. coli and yeast to human and verified that the identified
kernels preserved the fundamental input-output dynamics of the original
networks. We found that the kernels comprise nodes representing essential
genes, disease genes, drug targets, and synthetic lethal gene pairs (Figs. 5
and 6). Moreover, the kernels contained a high proportion of nodes repre-
senting genes with low evolutionary rates and genes that are ubiquitously
expressed in various tissues and are present in many species. These results
suggest that the kernels might be the backbones of biomolecular interac-
tion networks, and interaction networks might have evolved on the basis
of their kernels. We conclude that the analysis of a network kernel can
provide new insights into the design principles of complex biomolecular
interaction networks, identify potential drug targets, and facilitate mod-
eling and parameterization of the resulting smaller-scale networks. This
kernel identification network algorithm should only be applied to net-
works where neither stochasticity nor a time delay effect is dominant in
determining the dynamical properties of input-output response profiles.

Genes corresponding to nodes in the reduced network may be most
informative for phylogenetics or evolutionary studies, which may have im-
plications for understanding the domestication of animals. As the number
of organisms with well-defined signaling networks increases, it will be
ww.SCIENCESIGNALING.org

 on N
ovem

ber 15, 2015
g/
possible to investigate the effects of agri-

cultural domestication of animals on both
these genes represented by kernel nodes
and non–kernel nodes. For example, re-
duced sensory perception (less flightiness
and less need for detection of predators)
and increased immune response (living in
proximity and unnaturally large, genetical-
ly homogeneous groups) are signatures of
domestication that are both intensively
selected and probable preconditions for in-
troduction to farms. Thus, one could ask
if domesticated animals and their wild rel-
atives (such as cows and aurochs) have the
kernels representing gene networks that
would produce these phenotypes compat-
ible with domestication, whereas animals
that have not been domesticated success-
fully (deer or all sub-Saharan large mam-
mals) would have different kernels. One
could also evaluate if the genes represented
by the kernels between the domesticated
and nondomesticated have these genes
(and the kernel nodes) in domesticated
animals changed under intense selection
in a relatively short evolutionary period.
Kernel nodes may also suggest points of
Fig. 6. The kernel is enriched in drug targets. (A) Distribution of drug targets in the human network. The
blue bordered circles denote kernel nodes; the green bordered circles denote non–kernel nodes. Red
(white) fill denotes drug targets, and white fill denotes non–drug targets. (B) Ratios of drug targets in
the kernel and non-kernel. The ratio was calculated as (nodes that represent drug targets/total number
of kernel nodes) or (nodes that represent drug targets/total number of non–kernel nodes). (C) Av-
erages of the node degrees of total nodes and drug targets in the original network. (D) Averages of
the neighborhood connectivities of total nodes and drug targets in the original network. (E) Averages of
the closeness centralities of total nodes and drug targets in the original network. In (C) to (E), the error
bars denote SEs.
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genetic modification in agriculture because they lie on the critical path to
generation of products and hence may show strong signatures of domes-
tication or be future targets for modification.

The whole kernel can be modeled and then the behavior of a node in
the original network can be elucidated from more detailed analyses of the
kernel, and the kernel will show the modular organization of the original
network as well as the critical input and output edges, which must be in-
cluded in subnetwork models. We expect that the proposed kernel identi-
fication method can also be applied to facilitate the modeling and analysis
of middle-scale signaling pathways, such as the epidermal growth factor
receptor pathway (52–54), which already comprises a large number of
signaling proteins under various states. Borisov et al. proposed a model re-
duction scheme in which unfeasible protein states are eliminated on the basis
of a domain analysis (55). Our method reduced the number of signaling pro-
teins to be modeled, as shown in the examples of the circadian network and
the integrin pathway (Fig. 2A). The kernel identification method can be
used to screen the key signaling components that dominate the dynamics of
a given signaling pathway. This is particularly useful in the study of complex
signaling networks, because the identification of such key signaling compo-
nents is a fundamental step for any further analysis (56, 57).

Although we considered a pulsatile stimulus in this study to examine
the dynamical properties of the input-output response profiles of a cellular
system because many cell signaling inputs can actually be approximated
with this form of signal, other types of “biologically relevant” input stimu-
lations, such as long-term constant inputs or oscillatory inputs, can also be
approximated by controlling the parameter of the pulse signal (that is, the
duration) or the combinations of pulse signals. Future studies will extend
this method to determine its effectiveness in reproducing network dynam-
ics in response to the other (even biologically irrelevant) input stimulation
patterns.
 on N
ovem

ber 15, 2015
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MATERIALS AND METHODS

Classification of two- and three-node networks with
respect to dynamics
We constructed mathematical models of two- and three-node networks
with ordinary differential equations (see Supplementary Model Descrip-
tions for details) and simulated them 1000 times with random parameter
values in the interval [0, 1], where the stimulus was given by a pulse type
(fig. S13). Next, we classified 1000 response curves into six types (fig.
S14) for each model and represented the numbers of response curves in
each of the six classes by a six-dimensional vector (tables S10 and S11). If
a stimulus, such as a pulse—most cell signaling inputs can actually be
approximated with this form of signal—is given to a cellular system, it
can produce one of the following response profiles: a pulsatile response,
a monotonic increasing or decreasing response, a sustained oscillatory re-
sponse, or a damped oscillatory response. We considered these types of
response profiles in our examination of the dynamical properties. We
defined the dynamical distance D(X,Y) between two models represented
by X = (x1, x2, …, x6) and Y = (y1, y2, …, y6) by

DðX ,Y Þ ¼ jY=jY j − X=jX jj= ffiffiffi
2

p

where | | denotes the Euclidean norm

jX j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ… x2n

q
with X ¼ ðx1,x2,… xnÞ

On the basis of this distance, we applied the multidimensional scaling ap-
proach (58) to classify the two- or three-node networks with respect to
w

their dynamics (Fig. 1B). We used a distance criterion D < 0.001 for the
determination of the same network dynamics.

Kernel identification algorithm
Our algorithm can be applied to directed networks, such as signaling net-
works, gene transcription networks, and metabolic networks. For simplicity,
we assume that each edge in the networks has only one of two regulation
types (activation or inhibition). Hence, a biological network can be repre-
sented by a signed graph G = (V,E), where V is a set of nodes and E is a set
of edges with signs. Each edge can be represented by eij = (vi, vj, sij), where
vi is a start node, vj is an end node, and sij is a sign (+1, 0, or −1) of the edge
(referred to as the “signature”). sij = 0 denotes that two nodes vi and vj are
not connected by an edge. For each node vj, we define the set of start nodes
of the edges whose end node is vj, by VE(vj) = {vi|(vi, vj, sij)∈ E}. Likewise,
we define the set of end nodes of edges whose start node is vj by VS(vj) =
{vk|(vj, vk, sjk) ∈ E}. Let S be the set of signed graphs. Our kernel identi-
fication algorithm is represented by a map F: S→S satisfying the following
four conditions [for a given G = (V,E) ∈ S, let F(G) = (F(V),F(E))]:
(i) F preserves node-edge relations. That is, for a given edge, eij =
(vi, vj, sij), F(eij) = (F(vi), F(vj), F(sij)). Here, F(sij) = 0 denotes an edge
deletion.
(ii) F preserves input and output nodes.
(iii) Given vj satisfying either indegree(vj) = 1 or outdegree(vj) = 1, consider
the case that vj is not involved in a self-feedback loop, an incoherent feed-
forward loop, or a two-node feedback loop. For any vi ∈ VE(vj) and vk ∈
VS(vj), if (vi, vk, sijsjk) ∈ E, then F(vj) = F(vk) and F(sij) = F(sjk) = 0.
Otherwise, F(vj) = F(vk), F(sjk) = 0, and F(sik) = sijsjk. In this case, a new
edge (F(vi), F(vk), F(sik)) is contained in F(E).
(iv) Consider the case that there is no node satisfying the conditions for
the node-based reduction [step (iii)]. For each edge eij = (vi, vj, sij)∈ E,
if eij is not contained in any incoherent feedforward loop, then for any
vk ∈ VS(vj) [vk ∈ VE(vj), respectively], F(vj) = F(vi), F(sij) = F(sjk) = 0,
and F(sik) = sijsjk [F(ski) = sijskj, respectively].

Our algorithm minimizes the size of F(G) by reordering the nodes in
G. We repeated steps (iii) and (iv) for 1000 times reordering of nodes and
selected the minimal network for each G.

Essential genes, disease genes, synthetic lethal gene
pairs, and drug targets
The essential gene lists for three species, E. coli, S. cerevisiae, and
H. sapiens, were obtained from the database DEG (Database of Essential
Genes, version 5.4) (35). The disease gene list was obtained from OMIM
database (37) in the NCBI. This list contains 14,388 disease genes, 1536
of which are contained in the original human network. The list of synthetic
lethal gene pairs for human was obtained from iHSLN (inferred human
SL genes) (40). The drug target list was obtained from the DrugBank
database (48). This list contains 1330 proteins that are drug targets, 275
of which are contained in the original human network.

Tissue broadness
The tissue broadness (41) of a gene is defined as the number of tissues in
which the gene is the upper outlier, meaning that the mRNA abundance is
higher than the sum of the upper quartile and 1.5 times the interquartile
range (59). We calculated the tissue broadness information using mRNA
expression data in 79 human tissues (42).

Species broadness
We defined the species broadness of a gene as the number of species in
which homologs of the gene exist. The homolog information of 20 species
(table S12) was extracted from the HomoloGene database (43) in the NCBI.
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Evolutionary rate
The evolutionary rates were defined by the ratios of the nonsynonymous
substitution rates (dN) and the synonymous substitution rates (dS) for ho-
mologous gene pairs in human and mouse and they were obtained from
the Human PAML Browser (60).

GO analysis
GO (61) analysis was performed with the functional annotation tool in
DAVID (62). We first divided the 1493 human kernel genes into four
groups and the 460 deleted genes into three groups on the basis of the
ranges of evolutionary rate (see Fig. 5G for the ranges). We then retrieved
the GO terms significantly related with each gene group [Benjamini score
(63) <0.05], using the functional annotation tool applied to the 1953 genes
of the human network as a background set. We selected the child GO
terms related to parent terms (metabolic process, developmental process,
sensory perception, immune process, and signal transduction) in the GO
hierarchy.

Motif enrichment analysis
We identified network motifs using MAVisto (64) without considering
both edge labels and vertex labels. For reliable statistics, 1000 random
networks were generated, and the three-node subgraphs with P values
<0.05 were considered as network motifs. We defined the enrichment
of a motif for each gene class (Fig. 5H) as the ratio of the number of
the genes related to the motif contained in the gene class to the expected
number of genes related to the motif for the size of the gene class.

Statistical analysis
We performed one-sided two-sample c2 tests to evaluate the statistical
abundance of the essential genes (Fig. 5A), disease genes (Fig. 5B),
and drug targets (Fig. 6B) in the kernels. For the tissue broadness (Fig.
5D), species broadness (Fig. 5E), evolutionary rates (Fig. 5F), degree
(Fig. 6C), neighborhood connectivity (Fig. 6D), and closeness centrality
(Fig. 6E), the one-sided two-sample t test was applied.

Availability of the software
We have implemented the proposed kernel identification algorithm as
software. It is available from http://sbie.kaist.ac.kr/software and as part
of the Supplementary Materials.

SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/4/175/ra35/DC1
Model Descriptions
Fig. S1. The multidimensional scaling map for classification of responses of the nonlinear
(Hill-type) models of two- and three-node networks.
Fig. S2. The flow diagram illustrating the kernel identification algorithm.
Fig. S3. Ratios of kernel to original in terms of nodes and edges for the signaling networks
of E. coli, yeast, and human.
Fig. S4. Relative size of the giant component, which is the component with the most con-
nections, in the original three networks.
Fig. S5. The frequency distributions of three-node subnetworks in the signaling networks
of E. coli and yeast compared with the distributions of these subnetworks in their kernels.
Fig. S6. Average indegrees and outdegrees of kinases in the original networks and
kernels for the networks of E. coli, yeast, and human.
Fig. S7. The frequency of essential genes and disease genes in the kernel nodes and
non–kernel nodes.
Fig. S8. The ratio of essential genes contained in the kernel and non–kernel nodes of the
networks of E. coli and yeast.
Fig. S9. The ratio of essential genes represented in the set of nodes of each degree in the
human network.
Fig. S10. Degree distribution and cumulative frequency distribution of degrees in the hu-
man network.
Fig. S11. The degree in the human protein-protein interaction network versus the degree
in the human signaling network.
w

Fig. S12. Comparison of the input-output dynamics of the original network and the re-
duced network after applying five different network-reduction approaches.
Fig. S13. The stimulus pattern used for the simulation of two- and three-node network
models.
Fig. S14. Six representative response patterns used for classification of two- and three-
node networks.
Table S1. Response coherency between the original signaling network and the
corresponding kernel.
Table S2. GO terms related to genes represented by nodes in the kernels (kernel genes).
Table S3. GO terms related to genes that were excluded from the kernel, but were represented
by nodes in the original network (non-kernel).
Table S4. GO terms related to the kernel genes that had evolutionary rates larger than
0.25.
Table S5. GO terms related to the kernel genes that had evolutionary rates between 0.125
and 0.25.
Table S6. GO terms related to the kernel genes that had evolutionary rates between
0.0625 and 0.125.
Table S7. GO terms related to the kernel genes that had evolutionary rates less than
0.0625.
Table S8. GO terms related to non–kernel genes that had evolutionary rates less than
0.25.
Table S9. GO terms related to the non–kernel genes that had evolutionary rates between
0.125 and 0.25.
Table S10. Simulation results for linear models of 18 network structures.
Table S11. Simulation results for Hill-type models of 18 network structures.
Table S12. The list of 20 species examined in the HomoloGene database.
Data S1. The circadian regulatory network data where the first, second, and third col-
umns denote regulator, relation, and target, respectively. [Filename: Circadian_regulatory_
network.txt]
Data S2. The integrin signaling pathway data where the first, second, and third columns de-
note regulator, relation, and target, respectively. [Filename: Integrin_signaling_pathway.txt]
Data S3. The E. coli signaling network data where the first, second, and third columns
denote regulator, relation, and target, respectively. [Filename: Ecoli_network.txt]
Data S4. The yeast signaling network data where the first, second, and third columns
denote regulator, relation, and target, respectively. [Filename: Yeast_network.txt]
Data S5. The human signaling network data where the first, second, and third columns
denote regulator, relation, and target, respectively. [Filename: Human_network.txt]
Software. The software of the proposed kernel identification algorithm for MS-DOS–type
operating systems. [Filename: kernelfinder.exe]
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